РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ МАШИНОВЕДЕНИЯ УРАЛЬСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИМАШ УрО РАН)

Утверждаю
Директор ИМАШ УрО РАН
— Э.С. Горкунов
— 2013 г.

ПРОГРАММА-МИНИМУМ

кандидатского экзамена по специальности

05.17.08 «Процессы и аппараты химических технологий»

по техническим наукам

Программа-минимум содержит 8 стр.

Введение

В основу настоящей программы положены следующие дисциплины: системный анализ и математическое моделирование процессов химической технологии, физико-химическая гидродинамика, механика твердых дисперсных систем, теория тепло- и массопереноса, теория химических реакторов, химическая термодинамика, неравновесная термодинамика необратимых процессов.

Программа разработана экспертным советом Высшей аттестационной комиссии Минобразования России по химии (по химической технологии) при Российского химико-технологического vчастии университета им. Д.И. Менделеева, Московского государственного университета инженерной экологии И Ивановского государственного химикотехнологического университета.

1. Системный анализ процессов химической технологии

Основные принципы системного анализа; взаимосвязь отдельных процессах и аппаратах; иерархия явлений и их соподчиненность в изучении процессов и аппаратов; иерархическая структура химического производства; взаимовлияние аппаратов. Математическое моделирование как современный метод анализа и синтеза химико-технологических процессов и Сущность химико-технологических систем. И цели математического моделирования объектов химической технологии, формы представления информации процессе (управления, регрессии, дифференциальные 0 уравнения, интегральные уравнения, конечные конечно-разностные И уравнения). Постановка задачи математического описания процесса. Два подхода составлению математической модели процесса: детерминированный стохастический. Их сферы И возможности использования. Теория подобия размерностей. Подобные И анализ преобразования, физическое моделирование, метода характеристических масштабов. Основы теории переноса количества движения, энергии, массы; гидродинамические процессы: гидродинамика И основные уравнения движения жидкостей, гидродинамическая структура потоков, сжатие и перемешивание газов, разделения неоднородных жидких и газовых систем, перемешивание в жидких средах.

2. Типовые модели структуры потоков в аппаратах непрерывного действия

Модель идеального смешения. Вывод дифференциального уравнения модели. Вид функции отклика модели на стандартные возмущения. Частотные характеристики модели. Условия реализуемости принятых допущений в приложении к аппаратам химической технологии. Модель идеального вытеснения. Вывод дифференциального уравнения модели. Передаточная функция. Вид функции отклика и частотные характеристики модели. Сравнительная оценка идеальных моделей. Энтропийная оценка меры упорядоченности движения частиц. Каноническое и микроканоническое распределение Гиббса. Фактор распределения как выражение второго закона

термодинамики. Учет рассеяния по времени пребывания. Ячеечная модель. Свойство детектируемости. Частотные характеристики и вид функции отклика. Вывод уравнения предельного перехода к модели идеального вытеснения. Диффузионная модель. Комбинированные (многопараметрические) модели. Байпасирование. Последовательное и параллельное включение ячеек идеального смешения и вытеснения. Модель с застойной зоной.

3. Течение жидкости в пленках, трубах, струях и пограничных слоях

Уравнения и граничные условия гидродинамики. Течение, вызванное вращением диска. Гидродинамика тонких стекающих пленок. Струйные течения. Ламинарное течение в трубах различной формы. Продольное обтекание плоской пластины. Пограничный слой. Движение частиц, капель, пузырей в жидкости. Общее решение уравнений Стокса в осесимметричном случае. Обтекание сферической частицы, капли и пузыря поступательным стоксовым потоком. Сферические частицы в поступательном потоке при умеренных и больших числах Рейнольдса. Сферические капли и пузыри в поступательном потоке при умеренных и больших числах Рейнольдса. Обтекание сферической частицы, капли и пузыря сдвиговым потоком. Обтекание несферических твердых частиц. Обтекание цилиндра (плоская задача). Обтекание деформированных капель и пузырей. Стесненное движение частиц.

4. Химическая термодинамика

Система. Состояние системы. Уравнения состояния. Энергия. Работа. Теплота. Нулевой и первый законы термодинамики. Основные законы термохимии. О равновесных и обратимых процессах. Второй и третий законы термодинамики. Линейная термодинамика в задачах химии и химической технологии. Уравнения сохранения. Диссипативная функция многофазной гетерогенной среды. Соотношение взаимности Онзагера. Потоки массы и тепла в сплошной фазе. Массоперенос в химико-технологических системах с учетом наличия межфазных поверхностей. Вариационный принцип минимума производства энтропии. Принцип минимума приведенных термодинамических потоков. Определение средней толщины пленки в дисперсно-кольцевых режимах течения. Неравновесная термодинамика необратимых процессов в химической технологии. Термодинамическая функция Ляпунова вдали от равновесия. Метод термодинамических функций Ляпунова для выявления химических осцилляторов. Современное состояние проблемы колебательных реакций в химии. Эксергия, эксергетический метод информационноанализа химико-технологических систем; термодинамический принцип; использование методов оптимизации при ресурсосберегающих энергопроизводств (прямые, создании И декомпозиционные, структурно-декомпозиционные методы).

5. Массо- и теплоперенос в пленках жидкости, трубах и плоских каналах Уравнение и граничные условия теории конвективного тепло- и

массопереноса. Диффузия к вращающемуся диску. Теплоперенос к плоской пластине. Массоперенос в пленках жидкости. Тепло- и массоперенос при ламинарном течении в круглой трубе. Тепло- и массоперенос при ламинарном течении в плоской трубе. Предельные числа Нуссельта при ламинарном течении жидкостей по трубам различной формы. Массо- и теплообмен частиц, капель и пузырей с потоком. Метод асимптотических аналогий в теории массо- и теплопереноса. Внутренние задачи о теплообмене тел различной формы. Массо- и теплообмен частиц различной формы с неподвижной средой. Массоперенос в поступательном потоке при малых числах Пекле. Массоперенос в линейном сдвиговом потоке при малых числах Пекле. Массообмен частиц и капель с потоком при больших числах Пекле (теория диффузионного пограничного слоя). Диффузия к сферической частице, капле и пузырю в поступательном потоке при различных числах Пекле и Рейнольдса. Диффузия к сферической частице, капле и пузырю. В линейном сдвиговом потоке при малых числах Рейнольдса и любых числах Пекле. сфере в поступательно-сдвиговом Диффузия К потоке потоке параболическим профилем.

6. Массообмен, осложненный поверхностной или объемной химической реакцией

Массоперенос, осложненный поверхностной химической реакцией. Диффузия к вращающемуся диску и плоской пластине при протекании объемной реакции. Внешние задачи массообмена частиц, капель и пузырей с потоком при различных числах Пекле и наличии объемной химической задачи массопереноса реакции. Внутренние при наличии объемной химической реакции. Нестационарный массообмен с объемной реакцией. массо- и теплообмен в неньютоновских Гидродинамика, Реологические модели неньютоновских несжимаемых жидкостей. Движение пленок неньютоновских жидкостей. Массоперенос в пленках реологически сложных жидкостей. Движение неньютоновских жидкостей по трубам и каналам. Теплоперенос в плоском канале и круглой трубе (с учетом диссипации). Гидродинамический тепловой взрыв В неньютоновских жидкостях. Обтекание плоской пластины степенной жидкостью. Затопленная струя степенной жидкости. Движение частиц, капель и пузырей в степенной жидкости.

7. Элементы механики твердых дисперсных сред в процессах химической технологии

Структура и структурные связи твердых дисперсных сред. Понятие форм и размеров твердых частиц, гранулометрического состава, сыпучести, сил Реологические взаимодействия частицами. между свойства материалов, контактные силы внешнего трения и адгезионные свойства сыпучих материалов. Движение ожиженных твердых дисперсных систем. Псевдоожиженные Процессы слои. тепломассопереноса псевдоожиженных слоях. Механические процессы. Процессы измельчения и измельчающие машины. Классификация процессов и машин. Типы дробилок (щековые, конусные, валковые, молотковые и роторные). Типы мельниц (барабанные – центробежные и вибрационные, ударного действия и др.). Смесители сыпучих материалов, кинетика процессов смешения.

8. Тепловые процессы

уравнения процессов. Классификация используемых аппаратов. Теплообменники с передачей тепла через стенку. Кипятильники. Объекты переменные процесса. сосредоточенными c Примеры. распределенными параметрами. Теплообменники Теплообменники с идеальной изоляцией, теплообменники с потерями тепла через стенку. Математические модели кожухотрубных теплообменников. аппараты. Основные уравнения. Математическая Выпарные однокорпусной и трехкорпусной установки. Теплообмен излучением. Законы теплового излучения. Теплообмен излучением между поверхностями твердых тел, между газом и твердой поверхностью.

9. Диффузионные процессы

Математическое описание равновесия в многокомпонентных системах. Термодинамика равновесных и неравновесных состояний. Математическое процессов описание диффузии. Однофазная неподвижная Стационарная диффузия В движущихся средах. Диффузия многокомпонентных системах. Диффузионный потенциал. Массопередача в диффузионных процессах. Модели массопередачи. распылительные колонны. Математические модели аппаратов с поверхностью контакта, образующейся в процессе движения потоков. Модели тарельчатых колонн. Модели насадочных колонн. Деформация математических моделей изменении гидродинамических режимов. Математическая модель Модели эмульгационных колонн. пульсационных колонн. Модели ротационных аппаратов.

10. Математические модели сушильных установок

Кинетика сушки. Контактные сушилки. Сушилки со стационарным слоем. Сушилки с псевдоожиженным и движущим слоем. Особенности математического описания сушилок.

11. Математические модели кристаллизационных установок

Описание роста кристаллов и зародышеобразования. Типы используемых кристаллизаторов. Математические модели кристаллизаторов различного типа.

12. Математические модели процессов разделения

Равновесие и массопередача в системах жидкость-жидкость. Типы используемых экстракционных аппаратов. Математические модели колонных

экстракторов. Ректификационные и абсорбционные аппараты. Описание равновесия в системах жидкость-пар, жидкость-газ. Типы ректификационных и абсорбционных аппаратов, их математическое описание. Математические модели мембранных установок. Общая характеристика мембранных способов разделения смесей. Их классификация. Виды мембран. Описание процесса переноса в мембранах. Математические модели фильтрационных установок, установок обратного осмоса, первапорационных установок.

13. Гомогенные химические реакторы

Гомогенные изотермические реакторы. Классификация реакторов по гидродинамическому признаку. Реактор периодического действия. Проточный реактор с мешалкой. Каскад реакторов идеального смешения. Оптимальное объемов реакторов в каскаде. Реактор с перемешиванием потока (ламинарный и турбулентный режим). Выбор типа реактора с учетом селективности реакции. Микро- и макросмешение в реакторах. Расчет реактора при произвольном распределении и времени пребывания реагирующей смеси. Комбинированные модели реакторов. Примеры построения математических моделей и расчет некоторых типов промышленных реакторов. Фотохимические реакторы. Гомогенные неизотермические реакторы. Классификация реакторов по энергетическому Адиабатические политропические И реакторы. эффективности адиабатических и изотермических реакторов. Адиабатические политропические реакторы продольными перемешиваниями. c Комбинированные модели неизотермических реакторов. профили температур в каскаде реакторов и трубчатом политропическом реакторе. Оптимизация трубчатого реактора с промежуточным вводом холодной реагирующей смеси. Автотермические реакторы. Устойчивость работы адиабатических политропических реакторов. И устойчивости и селективности. Примеры построения математических моделей и расчета некоторых типов промышленных неизотермических реакторов.

14. Гетерогенные химические реакторы

Гетерогенные каталитические реакторы, классификация каталитических реакторов по конструктивному и гидродинамическим признакам. Одно- и многослойные реакторы стационарным слоем катализатора. Квазигомогенная и гетерогенная модели. Горячие точки в реакторе со слоем катализатора. Оптимизация многослойных стационарным каталитических реакторов с промежуточным вводом холодной реагирующей Определение продольного И радиального перемешивания адиабатических реакторах со стационарным слоем катализатора. Учет падения активности катализатора и изменение селективности. Устойчивость реактора со стационарным слоем катализатора и выбор диаметра трубок. Автотермические каталитические реакторы. Реакторы с псевдоожиженным слоем катализатора. Двухфазная и трехфазная модели реактора. Реакторы с движущимся слоем катализатора. Учет изменения активности катализатора в

реакторах с псевдоожиженным и движущимся слоем катализатора. Понятие о каталитических реакторах. Примеры построения многофазных математических моделей расчета некоторых типов промышленных реакторов. Газожидкостные каталитических И жидкость-жидкостные Классификация конструктивному гидродинамическим реакторы. ПО И признакам. Реактор с мешалкой. Тарельчатые и насадочные реакторы. Модель идеального вытеснения в газовой и жидкой фазах. Симметричные и асимметричные ячеечные модели с образованием твердой фазы. Особенности составления математической модели многофазного реактора. Примеры математических моделей И расчета некоторых составления газожидкостных реакторов. Реакторы для проведения процессов в системах газ-твердое. Классификация промышленных реакторов по конструктивному и гидродинамическому признакам. Модели реакторов с твердой фазой. Пример составления математических моделей и расчета реакторов для окисления серного колчедана и извлечения металлов из руд.

Основная литература

- 1. А.Г. Касаткин. Основные процессы и аппараты химической технологии. М.: Химия, 1973, 750 с.
- 2. А.Н. Плановский, П.И. Николаев. Процессы и аппараты химической и нефтехимической технологии. М.: Химия, 1987, 496 с.
- 3. В.В. Кафаров. Основы массопередачи. М.: Высшая школа, 1979, 494 с.
- 4. Д.А. Баранов, А.В. Вязьмин, А.А. Гухман и др. Процессы и аппараты химической технологии. Том 1. Основы теории процессов химической технологии / Под ред. акад. А.М. Кутепова. М.: Логос, 2001, 600 с.
- 5. Д.А. Баранов, В.Н. Блиничев, А.В. Вязьмин и др. Процессы и аппараты химической технологии. Том 2. Механические и гидромеханические процессы / Под ред. акад. А.М. Кутепова. М.: Логос, 2001, 600 с.
- 6. В.Г. Айнштейн, М.К. Захаров, Г.А. Носов и др. Общий курс процессов и аппаратов химической технологии. Книга 1. М.: Химия, 1999, 888 с.
- 7. В.Г. Айнштейн, М.К. Захаров, Г.А. Носов и др. Общий курс процессов и аппаратов химической технологии. Книга 2. М.: Химия, 2000, 860 с.
- 8. В.В. Кафаров. Методы кибернетики в химии и химической технологии. М.: Химия, 1985, 444 с.
- 9. А.В. Лыков. Теория теплопроводности. М.: Высшая школа, 1967, 600 с.
- 10. О. Левеншпиль. Инженерное оформление химических процессов. М.: Химия, 1969, 620 с.

Дополнительная литература

- 1. А.М. Кутепов, А.Д. Полянин, З.Д. Запрянов, А.В. Вязьмин, Д.А. Казенин. Химическая гидродинамика. М.: Бюро Квантум, 1996, 336 с.
- 2. Э.М. Кольцова, Ю.Д. Третьяков, Л.С. Гордеев, А.А. Вертегел. Нелинейная динамика и термодинамика необратимых процессов в химии и химической технологии. М.: Химия, 2001, 408 с.
- 3. Ю.И. Дытнерский. Мембранные процессы разделения жидких смесей.

- М.: Химия, 1975, 229 с.
- 4. Д.А. Франк-Каменецкий. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987, 802 с.
- 5. Теория тепломассообмена / Под ред. А.И. Леонтьева. М.: Высшая школа, 1979, 496 с.