XVII Международная конференция МЕХАНИКА, РЕСУРС И ДИАГНОСТИКА материалов и конструкций

ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОЙ МАГНИТОСТРИКЦИИ ФЕРРОМАГНЕТИКОВ С ПОМОЩЬЮ ЛАЗЕРНОЙ ИНТЕРФЕРОМЕТРИИ

Е. Д. Сербин*, В. Н. Перов**, В. Н. Костин

1 — Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук, 620108, г. Екатеринбург, ул. Софьи Ковалевской, 18 * - serbin@imp.uran.ru; ** - perovadim22@gmail.com

Аннотация. Величина магнитострикции ферромагнитного материала в существенной степени определяет эффективность электромагнито-акустического преобразования и интенсивность магнитоакустической эмиссии, которые основаны на приложении переменных магнитных полей. Показано, что в переменном магнитном поле возможно измерение динамических магнитострикционных характеристик с помощью лазерной интерферометрии. Экспериментально установлено, что определяемая по амплитуде второй гармоники упругих колебаний ферромагнетиков динамическая магнитострикционная чувствительность коррелирует с величиной максимального магнитострикционного удлинения исследованных ферромагнитных материалов.

Образцы

Была выбрана группа ферромагнитных материалов с различными магнитными и магнитострикционными характеристиками. Размеры образцов после обработки составили 3.8×6.1×86.2 мм.

В таблице приведены магнитные свойства исследуемых образцов из ферромагнитных материалов.

					. , ,	λ^+_{max} ,	λ_S ,
Материал	H_c , A/M	M_S , A/cm	μ_a	μ_{max}	b_0 , M/A	10-6	10-6
Сталь 9ХФ	1 980	13 800	37	210	0,022	0,4	-1,8
Сталь 75Г	780	15 700	66	460	0,14	0,8	-6,6
Сталь 30ХГСА	750	15 860	92	490	0,39	2,1	-1,2
Сталь 09Г2	280	16 300	110	1300	3,3	2,7	-4,5
Армко-Fe	85	17 300	270	2800	14,0	4,1	-12
Пермендюр	129	18 650	450	1400	0,83	_	58
Никель	350	4930	102	540	0.57	_	-35

Методика измерений

Кривые намагничивания и предельные петли гистерезиса образцов были измерены в замкнутой цепи с помощью измерительного комплекса REMAGRAPH C-500.

Измерение полевых зависимостей магнитострикции $\lambda(H)$ выполнено в однородном квазистатически изменяющемся магнитном поле соленоида

методом выносного индукционного датчика. Для измерения возникающих при перемагничивании упругих колебаний образцы в специальном закреплялись держателе дюралюминия (рис.1), позволяющем зажимать образцы с боковых поверхностей винтами с упором поверхностей образца. одной из торцевых Держатель образца помещался в соленоид с механического исключением контакта между держателем и стенками соленоида.

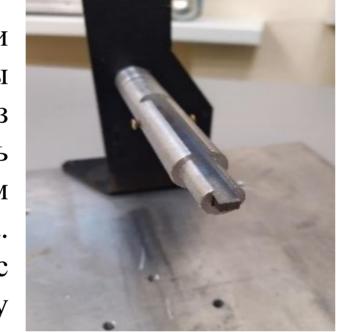
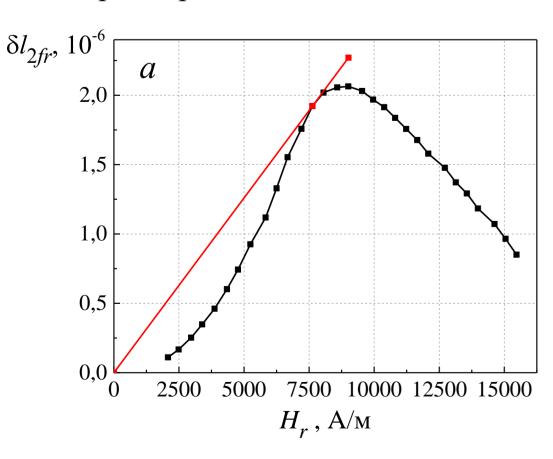



Рис. 1 – Держатель образца

Бесконтактное измерение магнитострикционного изменения размеров образцов производились с помощью лазерного сканирующего виброметра Polytec PSV-500-HV. Измерение колебаний производили в режиме быстрого преобразования Фурье с регистрацией спектра колебаний в полосе частот от 4 до 10 Гц.

Измерения проводились в неоднородном поле. Переменное магнитное поле H_r соленоида изменялось по синусоидальному закону с частотой f_r = 4,5 Γ ц.

Значения средней $(\delta l_{2fr}/dH_r)_{avg}$ и максимальной $(\delta l_{2fr}/dH_r)_{max}$ динамических магнитострикционных чувствительностей были рассчитаны с помощью программы "MgntstrSens" по полевым зависимостям магнитострикции, измеренным с помощью лазерного сканирующего виброметра PSV-500-HV.

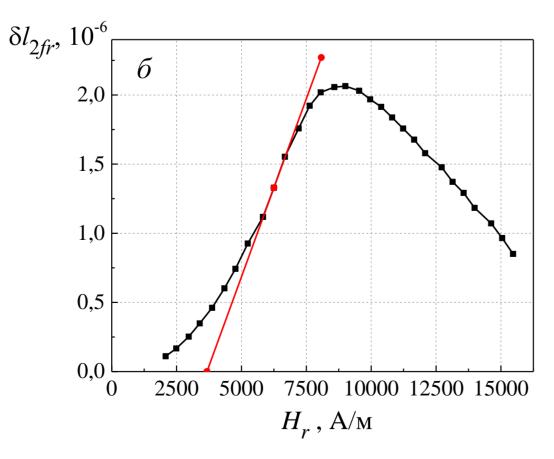


Рис. 2 — К определению средней (a) и максимальной (b) динамической магнитострикционной чувствительности

Экспериментальные результаты

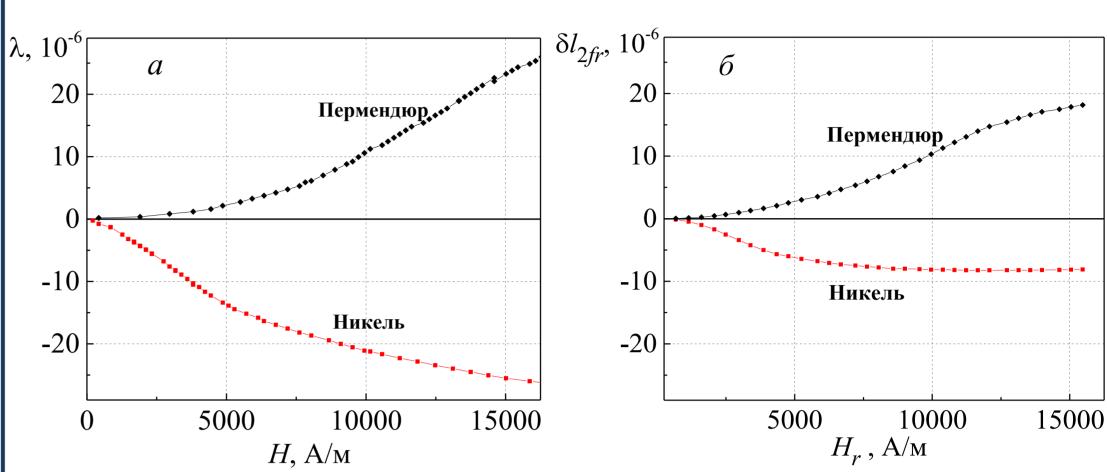


Рис. 3 — Полевые зависимости статической магнитострикции λ пермендюра и никеля, измеренные методом выносного индукционного датчика (a), и полевые зависимости амплитуды изменения размеров образцов δl_{2fr} , измеренные с помощью лазерного виброметра (δ)

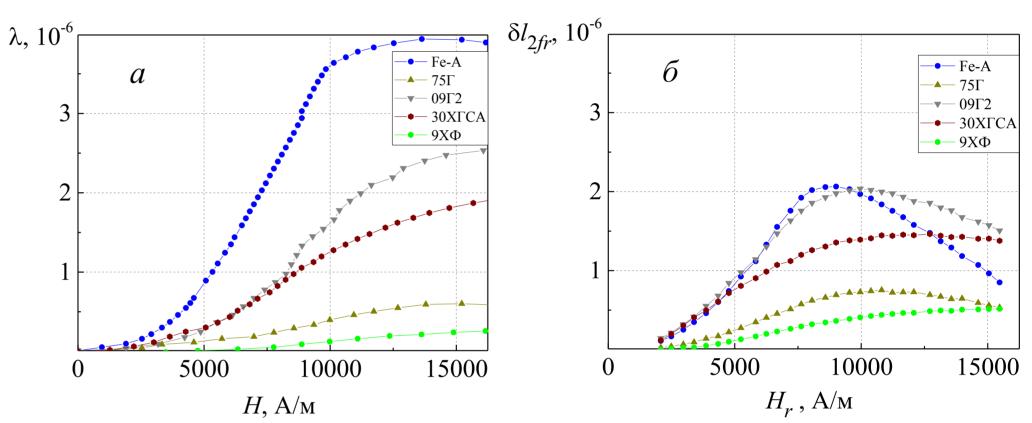


Рис. 4 — Полевые зависимости статической магнитострикции λ сталей различного химического состава, измеренные методом выносного индукционного датчика (a), и полевые зависимости амплитуды изменения размеров образцов δl_{2fr} , измеренные с помощью лазерного виброметра (δ)

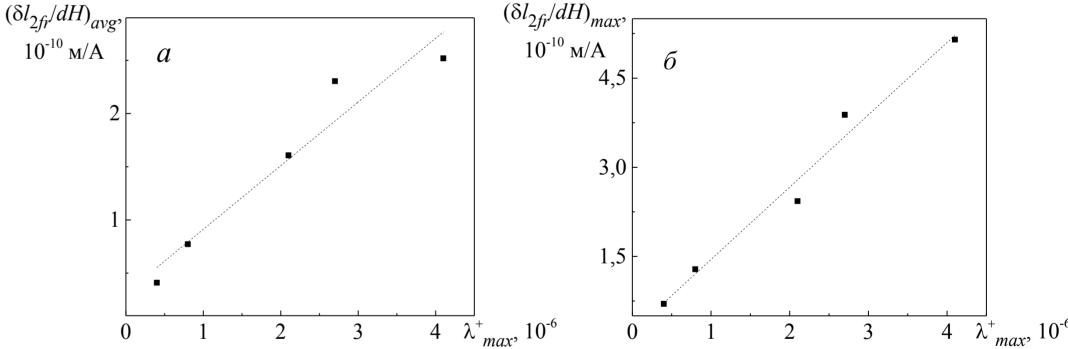


Рис. 5 — Зависимости средней (a) и максимальной (δ) динамической магнитострикционной чувствительности сталей от величины их положительного максимума магнитострикции

Квадрат коэффициента линейной корреляции величин $(\delta l_{2fr}/dH_r)_{avg}$ и λ^+_{max} равен $R^2=0.91$, а для величин $(\delta l_{2fr}/dH_r)_{max}$ и λ^+_{max} следует $R^2=0.97$. Таким образом, среднее и максимальное значения динамической магнитострикционной чувствительности сталей хорошо коррелируют с величиной максимального удлинения исследованных сталей.

Как видно из рис. 4 и 5, выход на насыщение и уменьшение динамической магнитострикционной чувствительности $\delta l_{2ff}/dH_r$ происходит при меньших значениях перемагничивающего поля H_r , чем для статической магнитострикции λ . В наибольшей степени это характерно для материалов с высокой магнитной восприимчивостью (пермендюр, никель, Армко-железо). Поэтому логично связать такое поведение величины $\delta l_{2fr}/dH_r$ со скин-эффектом, когда промагничивается не все сечение образца. Второй возможной причиной может быть использование неоднородного переменного поля, когда поле на концах образца существенно меньше, чем поле в центре, и это различие должно увеличиваться по мере роста намагниченности.

Заключение. Показана возможность бесконтактного измерения низкочастотных упругих колебаний, возникающих при перемагничивании ферромагнетиков с помощью лазерной интерферометрии. Установлено, что определяемые по амплитуде второй гармоники упругих колебаний образца среднее и максимальное значения динамической магнитострикционной чувствительности сталей коррелируют с величиной максимального магнитострикционного удлинения исследованных сталей и могут быть характеристиками динамической магнитострикции материалов.